
The PsyScope USB Bbox module: a
Software manual.
Second Draft, March 2007

Written by Luca L. Bonatti and Luca Filippin

Laboratory of Cognition and Development, Sissa/Isas, Trieste

 1 of 50

 1/10/09

Introduction
 4
Installation
 4
Quick Start
 5
The Menus relevant to the USB Bbox
 5

Input Devices and the Inputs Window
 6
Don't Use USBBbox
 6
Reference Timer
 7

The Usb Bbox Stuff Menu item and its window
 8
The Mask
 10
Port Direction and Logic
 12
The Start Test & Configure Mode
 13
Time Drift Estimation
 14
Send Serial Out
 14
The Voice Key Parameters
 16

The Delayed Trigger Voice Key and its settings
 16
The Minimum signal duration and Minimum silence duration parameters
 17
Trigger Threshold
 20
Primary and Secondary Gain
 20
The peak level
 21

The Voice Key Tuning button and the DTVKTuner program
 22
Starting the DTVKtuner
 22
Recording sound and trigger data to computer
 23
Auto vs manual tuning procedure
 24
The Manual Procedure
 24
The Automatic Procedure
 24
Tracking and inspecting the triggers
 26
Ending the tuning procedure and going back to PsyScope.
 27

Designing your experiment: The USBBbox condition
 27
The Default Condition
 28
Selecting restricted conditions
 28
Selecting conditions depending on other input ports
 30
The Serial In condition
 30
Serialin special conditions
 32
Conditions on other input ports
 32

Designing your experiment: The USBBboxDo action
34

 2 of 50

 1/10/09

MSKSET
 35
P0SET, P2SET, PXSET
 35
P0OR, P2OR, PXOR
 36
P0AND, P2AND, PXAND
 36
DIRSET
 36
LOGSET
 37
SEROUT
 37
VCKSET
 37

The USBBbox event type
 38
Designing your experiment: Other initialization parameters
 40

The debounce period
 40
Port Logic
 41
Port Direction
 41
Port2 Loopback Mode
 41
Serial data parking
 42

Designing your experiment: Setting variables with Serialin data and USBBOX ex-
pressions
 42

GetKey
 43
GetMsk
 43
GetRTC
 43
GetLog and GetDir
 44
VCKGET
 44
Composing USBBBox predicates inside expressions
 45
The SERIALIN assignement
 46

Analyzing your experiment: The Data File
 46
UBButtons
 47
UBPorts
 47
UBDrift
 47
UBVoice and UBOptic
 48
UBQueueLength
 48
UBRelativeTS, UBAbsoluteTS, and UBSystemTS
 48
Other Values
 50
A final point: Reference timer and time values
 50

Miscellaneous issues
 50

 3 of 50

 1/10/09

Introduction

PsyScope X offers support for an USB button box of novel conception, designed
by ioLab (http://www.iolab.co.uk/). ioLab did the hardware, and we are not re-
sponsible for it. The Sissa LCD Lab wrote the software (main programmer: Luca
Filippin).

ioLab will explain the hardware in a separate document. Here we will only refer to
the minimum hardware details needed to explain how to program it for PsyScope
X. However, if you want to understand how to use the USBBbox correctly, you will
need to understand some of the basics of its hardware.

An updated PDF version of this manual can be always downloaded here.

Installation

We prefer that people know what and where software elements are installed, so
we decided that you have to install the drivers manually.

You have to move the BBoxArchiver.kext, which you will find in the PsyScope X
packages, into the /System/Library/Extensions folder. You have to have adminis-
trative privileges in order to do that. After restart, you should see the USBBbox
when you plug it into any USB port. No other operation is necessary.

You will need PsyScope X, at least version B36.

If you want to uninstall the USBBbox software, simply trash the
BBoxArchiver.kext.

 4 of 50

 1/10/09

http://www.iolab.co.uk/
http://www.iolab.co.uk/
http://psy.ck.sissa.it/bbox/iolabUsbbbox.pdf
http://psy.ck.sissa.it/bbox/iolabUsbbbox.pdf

Quick Start

If you have no special needs, and you only want to receive input from the USBB-
box buttons, you only have to do two things

• Enable the Usb Bbox as an Input Device
• Write Condition- Action pairs in your events in which the UsbBbox is specified as

a termination condition for the events.

If that's all what you want to do, you can stop here and start playing with the
USBBbox. Hopefully, the basic stuff should be easy to understand for everybody
who has limited experience with PsyScope and/or its old serial CMU bbox. If you
need or want to understand the functioning of the UsbBbox more in details, con-
tinue reading.

The Menus relevant to the USB Bbox

The first thing you have to do is to open a script. Without it, you cannot do any-
thing with the USBBbox. When a script is open, you will see three relevant en-
tries under the "Experiment" menu:

They are:

• The USB BBox Stuff... menu entry.
• The Don't Use USB Bbox menu entry.

 5 of 50

 1/10/09

• The Reference Timer..." menu entry.

A fourth entry can be seen by choosing Input Devices..., which will make the fol-
lowing window appear:

We will take these windows in turn.

Input Devices and the Inputs Window

Let's start from the easy part. The Inputs window serves to enable the USBbbox
as an input device. Without this feature checked, the USBBbox will be ignored at
runtime. This works as the previous Serial Bbox, if you are familiar with it.

Don't Use USBBbox

The Don't Use USBBbox window allows you to entirely design and run an ex-
periment by ignoring all what concerns the USBBbox. In this way, you may pre-
pare an experiment by saying, for example, that a certain events ends when
something happens on the USBBbox OR on the keyboard, and the experiment
will run in any case. This allows you to 1. write an experiment for the USBBbox
without the USBBbox present, and 2. possibly write an experiment designed for
various input and output devices, including the USBBbox, that will run in other
ways when the USBBbox is not available. It's good practice to do that.

 6 of 50

 1/10/09

In order to "reactivate" the USBBbox for the current script, you have to select the
UsbBbox as input device.

Reference Timer

The USBBbox has a high precision internal timer that timestamps every event
occurring in it. The Mac also has an internal timer. Which one should you use?
Which one do we use?

Well, the right answer is: we use both. Here one needs to begin to understand
some issues connected to the hardware. The USB port is very inefficient for fast
reliable communication. In particular, communicating through the USB is limited
by the speed at which the USB port allows communication to enter and to exit the
computer. There are other passages, besides the bottleneck of the USB speed,
and other intermediate passage could also add uncertainty. Minimally, the flow of
a time request would involve the following passages (assuming that the clocks
are perfectly synchronized, and that communication direction is immaterial,
which is not the case):

Clearly, this is very inefficient. Because time requests in PsyScope occur very
frequently, it is just impossible to base all the functioning of PsyScope on the

 7 of 50

 1/10/09

USBBbox external clock. So we don't do it. (Incidentally, even the old CMU Bbox
was not doing it).

What is possible is to use the external timer as a reference timer. This is what the
"Reference timer" menu allows you to do. If you select the internal timer, then all
the time values will be those of the internal timer, but when an event occurs in the
USBBbox, and comes in with its own timestamp, the timestamp will be reported
to the internal clock's time. Vice-versa, if the chosen reference timer is the
USBBbox timer, the timestamp information of the events will be left untouched,
and all other time information recorded in the data file will be reported to the
USBBbox clock. However, for any internal operations, in both cases, PsyScope
keeps consulting the computer's internal clock, as this is the most efficient way to
fix the time for preparing and scheduling the events and the actions occurring
during an experiment.

A final issue has to do with clock synchronization. As the two clocks are never
perfectly synchronized, just consulting the two clocks at the beginning of the ex-
periment and doing the relevant adjustments is not enough (if you want very good
precision across a long experiment). So we add a way to estimate the time drift
for the two clocks, as we will explain below.

The Usb Bbox Stuff Menu item and its window

Briefly, the USBBbox is made of the following devices:

• Eight response buttons (which are really a port, Port1), working in "OR" mode. By
default, buttons are all on.

• Two eight-bit ports (Port0 and Port2), which can be configured in their directions
(as input or output ports) and in their logic (positive or negative). One of these
ports, Port2, is connected to a row of LEDs, while the other can be directly ac-
cessed via one of the jacks on the back of the USBBbox. By default, both ports
are configured with positive logic and as output devices. By default, these ports
are off.

• A serial port, that can send and receive via serial communication.The serial port
is configured as 9600 baud, 8 Data bit, No parity, 1 stop bit. You cannot change
these parameters.

• Two AUX ports. By default, one is connected to the voice key circuit; The other

 8 of 50

 1/10/09

will be connected with an optic line, but for the moment is a generic input line.
Both ports can be configured as interrupt trigger input ports.

• A sound in and a sound out jacks for a microphone or other sound input, and
sound pass-through for recording the sound input via the USBBbox.

When you select the Usb BBbox Stuff... Menu, you open a very rich panel, which
allows you to configure all these devices, as well as to test them.

 Let us take a look at the functions of the panel. A first function is to allow the
user to define a mask. By default, a mask is already defined, so for simple ex-
periments defining a mask is not necessary. However, it is important to under-
stand what a mask is before continuing.

 9 of 50

 1/10/09

The Mask

A mask is used to either make active or, well, mask any of the subcomponents of
the USBBbox.

In the default configuration, the USBBbox has all the buttons and all the
LEDs active. Every other configuration must be set by defining a mask.
A mask is tied to a script: the mask definition is saved directly in the Ex-
perimentDefinition section of the script, which is what you see right at
the top of it. If no mask is specified in the script, the program will as-
sume that the default mask must be used.

Masked components behave as if they did not exist during the execution of an
experiment. Any action on them is ignored by the USBBbox driver and never
reaches the program. That is, if you have a condition such as "Press any button" (
UsbBbox[Any] in the script) but, say, Button 2 is masked, nothing will happen if
you press Button 2. In this way, you can easily customize an experiment by pro-
gramming it in the most generic way, and then restricting the active buttons or
devices via a mask.

You can write a mask definition directly in the script, or use the USBBbox panel to
do it. In order to mask the devices via the panel, you click directly on their
graphical representation in the panel. For example, let us suppose that we want
to mask the three leftmost buttons and the three rightmost LEDs. You will click on
the buttons and the LEDs so as to obtain the following configuration:

When you click the "OK" button, the program will write the following line in the
ExperimentDefinitions section of the script:

USBBBoxInitialSettings: B4 B5 B6 B7 B8 "P2[11111000]"
and this configuration will be loaded at runtime, as well as the next time you open
the USBBbox panel.

 10 of 50

 1/10/09

Notice that you also have some "Press" and "Release" options for the buttons.
They are not relevant for a mask: you cannot "mask" a button only when it is
pressed, or released. Nevertheless, should you make a mistake and use the
"Press" and "Release" options in order to define a mask, the program will correct
you and write only the relevant mask information in the ExperimentDefinition sec-
tion. That is, should you happen to act directly on these options and obtain a
graphical configuration such as this:

the program will still code that buttons 4-8 are active, not that they are active only
when you release them. The initial settings for the script will still be:

USBBBoxInitialSettings: B4 B5 B6 B7 B8 "P2[11111000]"
Thus,

"Press" and "Release" options are irrelevant for mask definitions, like
"Begin Voice" and "End Voice" or "Begin Optic" and "End Optic". Like-
wise, the "OFF" indication written on the buttons is irrelevant: "OFF" only
signals that the button is not receiving input at the moment, while the
color signals that the button is active and could receive input.

In order to avoid conflicts of USBBbox initialization, when you define a mask via
the USBBbox Panel, you cannot directly edit the script. However, if, with the
panel closed, you edit the script directly, for example by changing the current ini-
tial settings from

USBBBoxInitialSettings: B4 B5 B6 B7 B8 "P2[11111000]"
to

USBBBoxInitialSettings: B1 B2 B3 "P2[10101010]"
then next time you open the panel, these changes will be reflected in it, as well as
in the USBBbox directly. Thus, with this line saved in the initial settings, you will
see this picture:

 11 of 50

 1/10/09

and you should see the corresponding LEDs 1, 3, 5, and 7 on in the USBBbox.

You mask or activate any other part of the USBBbox in the same way. Thus, if
you want to make the voice key active, press the voice key icon, and so on.

Port Direction and Logic

Before going on, we need to spend a couple of words about the funny characters
on top of the radio buttons for Port 0 and Port 2:

As both the direction of the ports and their logic can be changed, we exposed
these configurations on top of each radio button. As we were lazy, and didn't want
to spend too much time on the graphical part, we did it that way. If you don't know
what logic and direction are, then you can disregard them entirely. If you do, re-
member that p stands for positive, n stands for negative, o stands for output,
and x stands for input. Thus in the above configuration, all ports are configured
as output ports with positive logic. Instead, in the configuration below:

the first four lines of Port0 are input lines in negative logic and the other four are
(normal) positive output lines, whereas the first four lines of Port2 are positive in-
put lines and the other four are negative output lines.

 12 of 50

 1/10/09

Port logic and direction can only be changed by modifying the script directly, and
are not configurable through the graphical interface. There are odd aspects of this
topic that are not immediately intuitive, and you may have better things to do right
now. So the best is if you forget what you just wrote and ignore the little letters on
top of the ports, at least for now. But if you are really taken by the topic, the rele-
vant syntax is explained below.

Now we got close to the Start Test & Configure Mode button and we may as well
take a look at what it does.

The Start Test & Configure Mode

On the bottom left part of the panel, you will find two buttons: the Start Test &
Configure Mode and the Voice Key Tuning buttons.

For reasons tied to the hardware, you cannot be in Test & Configure
Mode AND tune the voice key at the same time. If you are in Test &
Configure mode and you press the Configure Voice Key button, the
Test & Configure mode will automatically end and you will get access to
the Voice Key Tuning facilities. When you are done, you will have to re-
enter Test & Configure mode.

When you are out of the Test & Configure mode, you can set a mask but you
cannot interact with the USBBbox. When you enter it, you get access to all the
current open devices as defined by the current mask, and you can see if these
devices respond appropriately. If you happen to need to modify the mask during
test, you can do this, and when you exit from the test the new mask will be saved.
This is what you can do in Test & Configure mode:

• Modify the mask if needed;
• Obtain visual feedback when you press the active buttons and when the Voice

and Optic keys trigger;
• Reset the USBBbox clock;
• Estimate the time drift of the USBBbox clock;
• Send and receive data via the serial port.
• Manually modify the Voice Key Parameters.

Instead, in Test & Configure mode you cannot:

• Use the USBBbox Panel to set conditions and actions parameters in a script.

 13 of 50

 1/10/09

Many of the features available in Test & Configure Mode are self-explanatory. Let
us thus only look at those which may appear a bit exotic.

Time Drift Estimation

As we were writing above, the USBBbox has a clock and the Mac has a clock.
They are not synchronized, and there always is a drift between the two clocks.
The drift is minimal, but for long experiments, it may be important to estimate it.
To do that, we use a procedure that is far from being perfect, but may be suffi-
cient. The procedure is activated by pushing the Estimate Timer Drift button. This
will check the misalignement between the two clocks for 2 minutes, and will retain
the misaligned value.

This test allows you to estimate the drift, not to know it exactly. In order
to be faithful, the estimation must be done in the absence of any other
event running (e.g., other programs, network activities) insofar as Os X
allows you to do it.

You can decide to use this value to directly correct the reaction times in the ex-
periment by clicking the corresponding checkbox. Because checking the USBB-
box timer takes itself takes time, the drift value cannot be update frequently; how-
ever, at moments in which the program is not particularly busy, drift is checked
again. The correction value you use (if you decide to do it) during the experiment
will be the value given by the corrected drift estimation. The updated drift values
are saved by default in the data file, so you can check whether they may poten-
tially affect your experiment.

Send Serial Out

The USBBbox has a port for serial communication. In Test mode, you can verify
that the serial communication works as it should. In order to send serial output,
you write an ASCII string in the text field right below the buttons for the Serial
Port:

 14 of 50

 1/10/09

When pressing the Send Serial Out button, the string is sent and you will see it
appear in the window below:

Notice how the string is cut, as there is a limit to the number of bits you can send
in one pass.

The syntax for serial communication is pretty liberal. You can basically send any
combination of ASCII characters or hexadecimal codes. Examples: “1”, “2”, “3”,
“Hans”, “Maria”, “Luca loves pizza” etc.

Use ʻ\ʼ (BACKSLASH) to toggle between ASCII and Hexadecimal out; the default
starting mode is of course ASCII. When in HEX mode, any non hexadecimal
character toggles the ASCII mode. That is, if you send a string like

AB\12EG

A and B are ASCII, then 12E is an hexadecimal, but G is again an ASCII charac-
ter. Hence, you will send the following string:

Using hexadecimals, you can also send control characters. The parser also com-
pletes the lesser important half-byte. That is, \1 is equivalent to \10. To output the
backslash character, use a double backslash (\\).

In the same window where you can see the result of a serial out, you can also
see any serial response the USBBbox may receive during the test period.

 15 of 50

 1/10/09

The Voice Key Parameters

This will be better understood after the next session. Suffice it to say that every-
thing you can do in automatic mode as explained below can be manually done
her by directing entering the values for the voice key. Importantly,

the voice key settings will not be saved inside the script. They are on
purpose “volatile” values because they must be adjusted speaker by
speaker. They will be saved directly inside the program and remain so
any time you load it, until you change them again. It is assumed that you
will adjust the voice key before running your experiment.

The Log file will save the voice key parameters set at the beginning of each ex-
periment run, so that you can check their values if you need to. You can also
change these values when an experiment is running. Furthermore, you can de-
fine a variable in PsyScope X, assign the voice key values to it during the ex-
periment, and save the variable in the data file, so that you can keep track of
what they were in the moment in which the voice key triggered.

The Delayed Trigger Voice Key and its settings

The USBBbox implements a version of the the delayed trigger voice key, as pre-
sented by Tyler, Tyler & Burnham (2005)1, to which the reader is referred for a full
understanding of how it works. This key is not a simple trigger that goes off
whenever a signal is detected, but a more sophisticated key more suited to do
experiments with human voice inputs. However, by setting its parameters appro-
priately, you may make it work like a traditional sound-triggered key. The relevant
part of the window looks like this:

 16 of 50

 1/10/09

1 Tyler, M. D., Tyler, L., & Burnham, D. K. (2005). The delayed trigger voice key: an improved analogue voice key
for psycholinguistic research. Behav Res Methods, 37(1), 139-147.

Another relevant part of the window is the Voice Key Tuning button,

which we will describe below. Let us examine the voice key parameters first.

The Minimum signal duration and Minimum silence duration parameters

The main role of the voice key is to run psycholinguistics experiments in which
the onset of participants' voice must be detected, although there are many other
potential roles you could assign the key during an experiment. In order to detect
when a person begins to speak, one has to fix how long a voice signal must be
before it is considered speech (as opposed to, say, clacking the tongue while
opening ones' mouth to speak), and how long the silence must be for it to be con-
sidered the end of speech (as opposed to, say, the silent period before explosion
in a stop consonant).

The delayed trigger voice key aims at reducing misses and false alarms. One im-
portant aspect of the DTVK is that it is, precisely, delayed. If I want, say, that the
minimum signal duration for a sound to be considered speech is 100 ms, then the
VK must wait at least 100 ms before determining that that was speech and trigger
the USBBbox (the at least close is important; see later). Of course, the longer

 17 of 50

 1/10/09

the signal duration for a sound to be considered speech, the later the onset of
speech will be determined (because the key must wait at least for the chosen
minimum signal duration before deciding that the sound was indeed speech),
while the shorter we ask it to be, the higher the chances to trigger false alarms
will be (because a click or a sound non related to speech may trigger the voice
key).

A parallel argument holds for silence: sometimes silence is part of a speech sig-
nal -- for example, when you have a stop consonant. You may not want the voice
key to go off when the voice pronounces the geminate "t" in "Attention", for ex-
ample. In this case, you have to set a much longer minimum silence duration, as
a silence in a geminate can easily last 100 ms or more. However, if you do that,
you also have to know that the silence separation between the words you want to
monitor must be larger than 100 ms; you may also have the side effect that acci-
dental sounds followed by some silence will trigger the bbox. It's a balance you
have to find yourself.

The above discussion means that, with the current implementation of the DTVK
offered by the USBBbox,

no action contingent to a voice key response can be faster than the
minimum signal duration + the minimum silence duration you set for the
voice key.

The following schema may clarify how these values affect the time of triggering:

 18 of 50

 1/10/09

For example, with a Minimum signal duration of 50 and a minimum silence dura-
tion of 10, assuming the ideal case that a continuous 50 ms above-threshold sig-
nal begins at time 0 and is followed by a continuous >10 ms silence (or below-
threshold signal), the DTVK will trigger a “ON” signal exactly 60 ms after the sig-
nal passes above threshold. However, although the decision occurs at 60,

the timestamp for the signal onset will contain a back-corrected value
report of 0. Thus, there is a delay, but you will not see this delay in the
time fields of the data file.

Even if a continuous above-threshold signal is longer than the Minimum Signal
Duration, the DTVK will still wait Minimum Signal Duration + Minimum Silence
Duration in order to send an “ON” trigger, and hence will be reported with that de-
lay. Also an “OFF” trigger after an “ON” will be delayed, but only of the value of
the minimum silence duration. OFF triggers will be corrected in the timestamp re-
ports likewise.

 19 of 50

 1/10/09

You have to keep this in mind when designing your experiment. This being said,
in most cases psycholinguistic experiments only ask to detect the onset of
speech, and not to trigger actions conditional to that detection. Hence, in most
cases the delay can be tolerated. Minimum signal and silence durations can go
from 1 ms to 255 ms.

Reasonable minimum signal duration and silence durations for the
DTKV may be 50 and 10 for the human voice. This should guarantee a
good accuracy for voice onset detection, at a price of triggering the
Voice key many times during a single speech episode. Start from these
values and change them according to your needs. These are also the
default values in the firmware of the USBBbox.

Because by default when you collect a reaction time PsyScope only collects the
first trigger of any input device, repeated triggers of the voice key during the same
speech episode should not pose a problem.

Trigger Threshold

We just saw that for the DTVK to work, one has to set a minimum signal duration
and a minimum silence duration. But determining that a signal is a signal also
requires that a minimum signal thresholds must be set for the timers to begin
counting signal. A trigger threshold can go from 1 to 900. These are arbitrary val-
ues, and the USBBbox comes pre-configured with a high threshold of 800. You
generally don't need to touch this value.

Threshold is a very simple filter that only works with respect to white
noise/ general background noise. So if you are in a variable noisy envi-
ronment, setting the threshold will not make a big difference.

Primary and Secondary Gain

Part of the working of the DTVK depends on boosting the signal in such a way
that the differences between below and above threshold signals are maximized.
The USBBbox contemplates two separate gains, arranged as per the schema be-
low:

 20 of 50

 1/10/09

The primary gain is a first-pass amplification that increases the signal strength
like a normal gain control would do. This amplified signal is passed to the sound
output if sound passthrough is active: this is what you will record if you ever re-
cord the USBBbox sound output. The secondary gain is a further signal boost that
is passed directly to the DTKV, and is only used by it. It would not make sense to
record this twice boosted signal, as the purpose of double boosting is to distort it
for increasing the efficiency of voice onset detection.

Primary and secondary gains range from 1 to 255; default values are, respec-
tively, 64 and 240. You have to experiment with your microphone, as these values
may change drastically from one microphone to another. Generally, you will want
to use the tuning procedure described below. But as a general rule,

you should tend to minimize the primary gain and maximize the secon-
dary gain. However, the optimal values depend on your microphone, the
speaker, and your computer.

The peak level

Peak level cannot be adjusted manually. It is automatically determined by the
calibration procedure described below, and it is only shown in the graphical inter-
face for your knowledge.

 21 of 50

 1/10/09

The Voice Key Tuning button and the DTVKTuner program

When you press the Voice Key Tuning button, you actually start a program
(called DTKVTuner) that takes you out of the Configuration Window and out of
PsyScope, into the Unix environment.

Remember that in order for the program to fully work, you must acti-
vated the voice key in the mask by clicking onto the voice key icon,
Without the voice key active in the mask, no trigger will be taken.

With the DTKVTuner, you can

• manually calibrate the Voice key;
• access a procedure to automatically calibrate the Voice Key parameters;
• test the quality of the input to the DTKV by recording the sound output from the

USBBbox
• see when the DTKV triggers when it receives signal.

We assume you have a microphone connected to the sound input jack (the red
plug on the back of the USBBbox. The green one is for output. This is the con-
vention for the Ugly Other Computers Besides Macs) and that you also have
connected a male-male audio cable from the USBBbox to the line in of your com-
puter if you want to record. Remember:

if you want to record the USBBbox sound output, you have to connect
the sound output from the USBBbox to the line in and you have to set
the Sound Preferences of your computer to record from the line in. Try
setting the Sound input volume to around 70% and check the sound
quality before relying on these recordings.

Starting the DTVKtuner

After pressing the Voice Key Tuning button, PsyScope enters a waiting mode,
and the control is passed to the Unix terminal. A new terminal window opens and
you see the following screen:

 22 of 50

 1/10/09

The first time you run the program, no already set value exists, and therefore the
program loads the default values in the UsbBbox. These are shown in the termi-
nal window. The question you are prompted asks whether you want to save both
the sound input to the USBBbox onto the computer, as an .AIFF mono sound file,
and a text file containing the trigger values. If you want to check how accurate the
voice key is, you are warmly suggested to answer “yes” (y, lowercase).

Recording sound and trigger data to computer

If you were wise and answered yes, you are prompted for a file name. If none is
specified, the default name (DTKV_Triggers and DTKV_Triggers.aiff) will be
used

By default, the files will be saved into your home directory, which is the
default directory for the Unix terminal, unless you specified otherwise.

If a file already exists (which will occur if you calibrate repeatedly), you are asked
whether you want to append the files or create new ones:

and again, you can use the default file (with ʻ#ʼ) , or append the existing file (with
ʻ*ʼ), or else create a new file.

 23 of 50

 1/10/09

Auto vs manual tuning procedure

After this step, the program asks you whether you want to use an automatic or a
manual tuning procedure.

This choice only concerns the primary and secondary gain parameters,
as you have to decide yourself the values for the minimum signal, mini-
mum silence duration and the trigger threshold.

No matter whether you select the manual (ʻmʼ lowercase) or automatic procedure
(ʻaʼ lowercase), you are first asked whether you want to modify the permanent
parameters (that is, the minimum signal, minimum silence duration and the trigger
threshold). You can do that or skip this according to your needs.

The Manual Procedure

In the manual procedure you can then modify the secondary and primary gains
by entering new values (from 0 to 255) in that order:

When you confirm, the new set of values is displayed, and the algorithm asks you
to enter a carriage return to set the zero level. After that setting, the manual and
the automatic procedures proceed in the same way. So let us take first a look a
the automatic procedure.

The Automatic Procedure

In the automatic procedure, the program chooses the secondary and primary
gains by for you by estimating the signal strength and the background noise. To
estimate the signal, you are first asked to speak at a normal level with a continu-
ous sound. For simplicity, we ask you to say “PAAAA” until the programs tell you
to stop:

 24 of 50

 1/10/09

Remember to first begin speaking and then hitting <enter>.

When the program has determined the primary gain, it will tell you

and will ask you to stay silent in order to assess background noise:

After this, the newly determined set of parameters is shown, and you can begin
tracking the triggers:

 25 of 50

 1/10/09

Tracking and inspecting the triggers

When you hit <enter>, the program will first play a long beep. This is done to set a
first clear trigger, as well as to have a clear sound recorded into your sound file.
After the beep is finished, you can start speaking, and you should see the ON
and OFF triggers being written to the terminal:

In analogy with a button, type D triggers are down triggers (as if you were press-
ing a button), hence “ON” signals, and type U triggers are up triggers (as if you
were releasing the button), hence “OFF” triggers. This recording will continue
until you press <enter> again. These values will be saved in a text file, which will
look like this:

 26 of 50

 1/10/09

You can then check your text file and your sound file, put into correspondence the
trigger times with the sound signal, and figure out if the trigger accuracy is suffi-
cient for your needs. This can be rather easily achieved by scripting a program
like PRAAT (http://www.fon.hum.uva.nl/praat/).

Ending the tuning procedure and going back to PsyScope.

You can repeat the tuning procedure if you are not happy with it as many times as
you please. When you are finished, you must decide whether to save the last
tuned parameters. If you do, when you go back to PsyScope, you should see
these values immediately reflected in the UsbBbox Stuff... window, and these pa-
rameters will be used during your experiment. These parameters will be also
saved into the Log file when you run the experiment.

If you decide not to save the parameters, the old parameters will remain active. In
either cases, a dialog box will tell you that the procedure is finished:

Clicking “OK” will close the DTVKTuner, but will not take you back automatically
to PsyScope: you have to make the program active manually.

We can now begin looking at how to design a real experiment. As in all other as-
pects of PsyScope, input/output devices interact with the program via Conditions
and Actions. We will analyze these commands separately.

Designing your experiment: The USBBbox condition

Event attributes and event actions have now access to a new set of conditions
relative to the UsbBBox, along the lines of the old CMU Serial Bbox. Only, there
are much more possibilities given by the UsbBBox.

 27 of 50

 1/10/09

http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/

The Default Condition

When you specify that an events terminates with a UsbBbox input, you select the
USBBbox in a standard condition window:

By default, clicking on the UsbBbox icon will select any USBBbox input line avail-
able given the current mask. That is, the condition written in the script will be:

 USBBBox[B_ANY]
Any really means any given the mask: if the voice key is active, a voice trigger will
terminate an event whose duration is USBBBox[B_ANY]. If instead, say, Button
4 is masked, nothing will happen when button 4 is pressed even if the event ter-
minates with USBBBox[B_ANY].

Selecting restricted conditions

If the USBBBox[B_ANY] condition is too wide for your needs, you can click on
the UsbBbox line of the Conditions window, and you will open again the USBB-
box window we have already discussed.

However, this time the window has a different role. Instead of allowing
you to select a mask, it allows you to write the relevant conditions in the
script. Thus, you do not operate on the button icons only, but also on the
Press and Release, the Begin Voice, End Voice, or the Begin Optic, End
Optic checkboxes.

Thus, suppose you want to end an event when the subject presses Button 3 or
Button 4, releases Button 5, does anything on Button 6, or else stops speaking.
You would select the Duration option of the Event Attribs:

 28 of 50

 1/10/09

then open the Condition window and double-click on the USBBbox part:

and when the USBBbox window open, deselect the irrelevant buttons, select But-
ton 3 and 4, (or equivalently, mark the Press checkbox of Button 3 or 4 -- in the
example, we do both things) the Release checkbox of Button 5, both checkboxes
of Button 6, and mark the End Voice checkbox of the Voice Key after having se-
lected it:

 29 of 50

 1/10/09

Notice that while you are doing that, the text field (which you cannot modify)
writes the expression that it will finally be written in the script, for your inspection.
Thus, when you press OK, you will find this duration condition in the script:

Event1::
	 EventType: Text
	 Duration: USBBBox[B2_DOWN B3 B4_UP B5_BOTH VOICE_END]

If you scripted the script directly, and then opened the USBBbox window, you
would find the same button configuration shown above, as the window reflects
what it finds in the scripts or else scripts what is reflected in the graphical
interface.You will have guessed that B stands obviously for Button, VOICE for the
Voice key (Aux0), and, surprise, OPTIC for the optical in (Aux1).

Notice that, as the example above shows, B2_DOWN is equivalent to B2. Like-
wise, VOICE is equivalent to VOICE_START and OPTIC to OPTIC_START.

Selecting conditions depending on other input ports

The Serial In condition

While setting Conditions, the USBBbox window has another slight change con-
nected to the serial port. If you now inspect the buttons related to it, you will see
that the Send Serial Out button is grayed, and the Add Serial In button is not.
With that, you can add conditions related to incoming serial communi- cation.

 30 of 50

 1/10/09

To do that, you have to use the same text field below the buttons that was used to
test serial communication. However,

serial in data must be written within single quotes.

Thus, to write a condition that triggers when the serial port receives an 'a' charac-
ter, you have to write:

then press the Add Serial In button. This will be reflected in the window in the
relevant text inspection field

as well as in the script when you OK the changes, with the following syntax:

Event1::
	 EventType: Text
	 Duration: USBBBox["SERIALIN['a']"]

Notice the double quotes surrounding the SERIALIN clause, and the
single quotes surrounding the ASCII character.

This is not the most straightforward syntax, but for reasons connected to the
PsyScope legacy code doing otherwise would have taken an unjustified effort. In-
side a SERIALIN condition you can write data with the same syntax we explained
in the Send Serial Out section. Thus

 31 of 50

 1/10/09

Conditions["SERIALIN['Hello']"]
is well formed.

Notice, however, that because the single and double quotes have special mean-
ings, they also needs to be preceded by a backslash. Thus, if you want a SERI-
ALIN condition triggered by, say, Hello followed by a carriage return and then fol-
lowed by the single quote, you will write:

Conditions["SERIALIN['Hello\13\'']"]
Notice the double single quote: one preceded by the backslash, interpreted liter-
aly, and the other as a closure of the data structure.

Serialin special conditions

The data coming from the serial port are bufferized. Thus, also conditions on the
size of the buffer can be written. So the condition

Conditions["SERIALIN[=20]"]
is satisfied whenever the input bytes are exactly 20. Likewise, the condition

Conditions["SERIALIN[<30]"]
is satisfied so long as the input bytes are less than 30, and the condition

Conditions["SERIALIN[>10]"]
is satisifed any time the input bytes are more than 10.

Finally, the condition

Conditions["SERIALIN[]"]
(where nothing is written inside the inside square brackets) is legitimate and sat-
isfied by any input from the serial port.

Conditions on other input ports

Any port that is enabled as input port can be used and scripted in a
Condition.Thus, if the first four lines of Port0 are enabled as input lines, you can
write a condition triggered by input coming to, say, the first two lines by clicking
the first two radio buttons:

 32 of 50

 1/10/09

You can see from the px string that they are input lines (with positive logic).2

This condition will write the following clause in the script:

Event1::
	 EventType: Text
	 Duration: USBBBox["P0[11000000]" "SERIALIN['a']"]

Again, notice that the P0[11000000] part is written between double quotes.

Conditions on Ports P0 and P2 are matching conditions: they trigger
when all the string is verified.

That is, a condition such as

Conditions[USBBBox["P0[11100111]" "P2[10101010]"]] =>

 33 of 50

 1/10/09

2 In fact, if you switched again in Test mode, you would see that you could not select
the x (input) ports by clicking their radio buttons, whereas the o ports (outputs) would
be highlighted if active. That is, you would see this:

assuming that the script enables the first four lines as input and the last four as
output, with this ExperimentDefinition clauses:

USBBBoxInitialSettings:"P0[00001111]"
USBBBoxInitialPortsDir: "P0[11110000]"

will trigger iff

• (the status of Port 0 is 1 AND 1 AND 1 AND 0 AND 0 AND 1 AND 1 AND 1)

or

• (the status of Port 1 is 1 AND 0 AND 1 AND 0 AND 1 AND 0 AND 1 AND 0)

Analogous considerations hold for the AUX0 and AUX1 ports, when enabled as
input ports.

A caveat: remember that when when Port 2 Loopback is active, the di-
rection of the single lines you may have set for Port 2 will be ignored.

Designing your experiment: The USBBboxDo action

When you define a Condition-Action pair, the USBBoxDo action allows you to
modify practically any aspect of the new USBBbox. Let us take a look at them
and their syntax.

Selecting the USBBboxDo action opens the following window:

and the Command menu allows you to access to a pulldown menu with the avail-
able choices:

 34 of 50

 1/10/09

MSKSET

MSKSET allows you to change the masking state of the asyncronous ports of
the USBBbox during the experiment. These ports are Port 1 (the buttons) and
the AUX port. The AUX port comprises the optic and the voice keys, but in fact is
a port like any others, containing 8 bits. Thus, this command takes 16 bits as an
argument, the first 8 of which correspond to the eight buttons, and the other 8
corresponding to the AUX lines.

Notice that for hardware reasons, the two AUX lines corresponding to the voice
and the optic keys are, unintuitively, the lines 3 and 4 of the AUX port. Thus the
action:

Action[MSKSET 1111111100110000]
 would make all the eight button active, as well as the voice and optic keys.

P0SET, P2SET, PXSET

These commands set port P0 or P2, or both together. They take a 8 bit sequence
as input (16 bits for PXSET). Thus,

Action[USBBBoxDo[P0SET 10101010]]
sets lines 1, 3, 5, and 7 to ON on Port 0 and

 35 of 50

 1/10/09

Action[USBBBoxDo[PXAND 101010101111111]]
sets lines 1, 3, 5, and 7 to ON on Port 0 and all lines of Port 2 to ON. These
commands work in conjunction with the logic and direction of the ports, which are
set independently.

P0OR, P2OR, PXOR

These commands work exactly as the commands above, but use an OR logic to
set the ports.

P0AND, P2AND, PXAND

Same as above, with AND logic.

DIRSET

This command sets the port directions (as input or output), line per line, and take
a 16 bit argument, 8 per port. Thus

Action[USBBBoxDo[DIRSET 100000011111111]]
sets Line 1 of Port 0 as output line and the rest as input lines, and sets all the
lines of Port 2 as output lines.

For Port2 (the buttons), DIRSET can be used also to activate port loopback. The
loopback may allow direct hardware feedback to button presses, by switching the
LEDs on or off when the buttons are pressed. In this case, you have to pass two
parameters: one is the 16 bit string as above, and the other is one of the three
parameters

P2NoLoopback
P2LoopbackSwitchOnLedOn
P2LoopbackSwitchOffLedOn

whose meaning is self explanatory Thus, an action such as:

EventActions: Conditions[Start[]] => Actions[USBBBoxDo[DIRSET
"100000011111111 P2LoopbackSwitchOnLedOn"]]

 36 of 50

 1/10/09

will activate loopback from that moment on, and will cause the LEDs to switch on
when the buttons are pressed. Of course, you can obtain the same behavior by
scripting the LEDs' behaviors, but the loopback mode will allow you to obtain a
more immediate response, as the switching is directly handled by the bbox and
does not need to pass through the OS and the software.

LOGSET

 This command sets the port logic (as positive or negative), line per line, and take
a 16 bit argument, 8 per port. Thus with

Action[USBBBoxDo[LOGSET 101010101111111]]
lines 1, 3, 5, and 7 of Port 0 work in positive logic and the even lines of Port 0
work in negative logic, whereas all lines of Port 2 work in positive logic. As a de-
fault, all lines of both ports work in positive logic.

SEROUT

This command sends any data out via the serial port. Thus

Action[USBBBoxDo[SEROUT Pippo is \0Athe best]]
sends the (unquoted) string "Pippo is\nthe best". The syntax for serial communi-
cation is explained in the Send Serial Out section.

VCKSET

This command can change the voice key parameters during the experiment. It
takes the parameters available to tune the voice key as explained above. Thus,
as you would expect, the parameters it can take are

• MinSigDur for Minimum Signal Duration;
• MinSilDur for Minimum Silence Duration;
• TrigThreshold for Trigger Threshold;
• PriGain for Primary Gain;
• SecGain for Secondary Gain; and
• MicPass for Microphone PassThrough on or off.

 37 of 50

 1/10/09

Thus, the following are well formed actions:

Action[USBBBoxDo[VCKSET "MinSigDur(20) MinSilDur(100)
PriGain(100)"]]

or

Action[USBBBoxDo[VCKSET "TrigThreshold(600)"]]
or any other combination you may want to use. By carefully using these parame-
ters, it is possible to adapt the voice key to the speaker. For example, as speak-
ers modify their voice during the experiment by getting softer or louder, it is pos-
sible to design events that, adding on certain predefined keys, change the pri-
mary gain "on the fly" during the experiment. But this requires some practice with
the behavior of the Voice Key.

The USBBbox event type

Just as PsyScope 9 provided a BBox event type for the CMU Button Box, we
have maintained the possibility of introducing an USBBbox event type accessible
from a template window:

This is essentially a shorthand to define output states of the ports 0 and 2. Thus
adding an USBBbox event and setting its stimulus, via the graphical interface just
as you would do for any other stimulus, thus:

 38 of 50

 1/10/09

will open the USBBbox window. From this, you will only be able to access the part
relevant to this stimulus -- the upper left part allowing you to fix Port0 and Port 2.
Clicking on every other part of the window will have no effect. Setting the stimulus
will write the stimulus definition in the script with the by now known syntax, con-
tained in double quotes. For example, a USBBbox event may look like this:

UsBBoxEvent::
	 EventType: USBBBox
	 Duration: 100
	 Stimulus: "P0[00001111]" "P2[00001111]"

and the USBBox window that will open if you want to modify the definition of the
stimulus for this event will reflect any change you may want to script directly
within the definition.

Thus essentially running a USBBbox event is equivalent to using a condition-
action pair within any event, in which the action contains a USBBboxDo com-
mand with a P0SET, P2SET OR PXSET CLAUSE. Notice that even for USBBbox
events, the stimulus definition is affected by the logic and direction of the ports.

 39 of 50

 1/10/09

Designing your experiment: Other initialization
parameters

There are other aspects of the USBBbox that you can customize for your experi-
ment, which are only accessible by direct scripting the ExperimentDefinitions sec-
tion of your script.

The debounce period

Any time a button is pressed or released (or any other line goes on or off for that
matter), a decision must be made as to how short a press/release event must be
for it to count as a press/release event. The spring itself of a button can oscillate,
thus creating a train of press/release events when the subject only pressed one.
Thus, a debounce period is defined, which is basically a refractory period starting
after a change in state is detected for a button, within which any other state
change is disregarded.

By default, the button press debounce time is set to 20 milliseconds, and the re-
lease debounce time to 5 milliseconds. The same values are set for the Optic key
line (INT1), whereas the voice key parameters are set to 0 and entirely under the
control of the DTVK tuning procedure.

For special needs, you may want to change the default debounce periods, by
adding a line like this in the ExperimentDefinitions section:

USBBBoxDebouncePeriods: "B_ANY(10)"
This would reduce the release debounce period for any key to 10 milliseconds.
The following predicates are supported:

B_ANY() B_ANY_UP() B5() B5_UP() VOICE_START() VOICE_END()
OPTIC_START() OPTIC_END()

where the desired time in milliseconds must be put within the brackets. All the
debounce period settings must be in one single line, each clause contained in
double quotes. Thus,

USBBBoxDebouncePeriods: "B_ANY_UP(40)" B_ANY_(100)"
"OPTIC_START(200)" "OPTIC_END(400)"

would be well-formed.

 40 of 50

 1/10/09

As we recalled, in its normal use the voice key debounce periods are really the
minimum signal and minimum silence durations set via the DTVK tuning proce-
dure. However, we left the possibility to set them via ExperimentDefinitions be-
cause in certain conditions you may want to deactivate the voice key and use its
line as a normal AUX input line; in this case, and only in this case, you would
want to modify the deboucne settings. Always because of the normal use of this
line for the voice key, the debounce default values are set to 0.

Port Logic

Port logic for Ports 0 and 2 can be set via a line such as the following in Experi-
mentDefinitions:

USBBBoxInitialPortsLog: "P0[00001111]" "P2[11110000]"
Zero is for negative logic, 1 for positive logic. In this example, the first four lines of
Port 0 and the last four lines of Port 2 work in negative logic. By default, all lines
work in positive logic.

 Port Direction

Port direction for Ports 0 and 2 can be set via a line such as the following in Ex-
perimentDefinitions:

	 USBBBoxInitialPortsDir: "P0[11110000]" "P2[11110000]"
The value 0 is for output, 1 for input. In this example, the first four lines of Port 0
and the last four lines of Port 2 are input lines. By default, all lines are output
lines.

Port2 Loopback Mode

It may be useful to have direct feedback for button presses by using the LEDs. To
do this, you have to activate the Loopback Mode for Port2 (the buttons). This can
be done in two ways: either using a condition-action pair in an event, as ex-
plained above, or else by using the following in ExperimentDefinitions:

USBBBoxInitialPortsDir:P2LoopbackSwitchOnLedOn
where you can change the parameter with the following values:

P2NoLoopback

 41 of 50

 1/10/09

P2LoopbackSwitchOnLedOn
P2LoopbackSwitchOffLedOn

Obviously, default is no Loopback. P2LoopbackSwitchOnLedOn will switch on
the LEDs while the buttons are pressed, while P2LoopbackSwitchOffLedOn will
switch the LEDs on at the beginning of the experiment, and will switch them off
while the buttons are released.

Serial data parking

During an experiment, serial data coming in may be used only to trigger some
events. In this case, as soon as the condition defined by a SerialIn condition
clause is satisfied, the relative action will be taken. However, in some experiment,
one may be interested in making other considerations on the serial data -- for ex-
ample, by comparing two streams of data coming in at a different moment during
the experiment. In that case, the data must be retained. It is possible to activate a
temporary buffer that will park the data for further use. To do this, you have to add
to the ExperimentDefinitions section the following line:

 USBBBoxParkSerialData: TRUE
the default being FALSE. When data are parked, you can assign them to vari-
ables via expressions, as explained below.

Once you activate data parking, you will also have to to take care to empty the
buffer. This can be done by assigning serial in data to variables, as explained be-
low.

Designing your experiment: Setting variables with
SERIALIN data and USBBOX expressions

It is possible to retrieve several current values of the button box, which can be ei-
ther used inside logico-arithmetical expressions or to assign values to variables.
The variables must be defined by the user in the usual way provided by
PsyScope, and must be of the right type. The reasons why we allow certain But-
ton Box expressions to appear in a logico-arithmetical expression is that, unlike
functions, which are always evaluated before a trial is executed, expressions are

 42 of 50

 1/10/09

evaluated in real time. Thus, assignments of values to variable and expression
computations correctly reflect the current state of the USBBbox.

If your experiment may need them, we strongly recommend using variables to
save these values in the data file. For example, you may want to have a column
that marks what the minimum signal duration of the Voice Key was at the moment
a reaction time was used, as this may have been changed during an experiment.
Definitely save more data than less!

The available commands are listed below. In the example that follow, we assume
that the user has already defined the variable MyVariable in her script, with the
appropriate type.

All these assignments, for which we present scripting examples, can be
set via the graphical interface by using the Set option provided in the
action list of the EventActions window, by typing the relevant variable
name in LValue and the correct unquoted string in Expression. Alterna-
tively, they can be scripted directly by writing the Set expression inside
an Action[] clause, inserting the expression inside double quotes.

GETKEY

With the expression

Set[MyVariable "USBBOX GETKEY"]
inside an action, the user can retrieve the state of the two asynchronous input
ports (buttons and AUX). The result is a 16 bit string.

GETMSK

With

Set[MyVariable "USBBOX GETMSK"]
the user can retrieve the mask settings of the USBBbox. The result is a 16 bit
string.

GETRTC

WIth

 43 of 50

 1/10/09

Set[MyVariable "USBBOX GETRTC"]
you can retrieve the current USBBbox timer. The result is a long integer value.

Do remember that, for the reasons explained above, the precision of the
returned value is likely to be low. This expression directly queries the
USBBbox for the timing information, and waits for an answer. It is thus
subject to the necessary delays imposed by the USB communication,
plus the delay that the USBBbox will add in processing the command.

GETLOG and GETDIR

The expressions

Set[MyVariable "USBBOX GETLOG"]
and

Set[MyVariable "USBBOX GETDIR"]
return, respectively, the port logic and directions, as strings of 16 bits.

VCKGET

Retrieving voice key parameters is slightly special. As there are multiple parame-
ters, we introduced a new type of variable, Voice Key, which you will find under
the Variables window:

This variable is basically an array, composed of these fields: MinSigDur, Min-
SilDur, TrigThreshold, PriGain, SecGain, MicPass, whose meaning should be ob-
vious and is defined in the VCKSET section of this manual. So, in order to extract

 44 of 50

 1/10/09

a voice key parameter, you actually need two variables: one of type Voice Key,
and one of type integer or long integer. You can then use the double assignment

Set[MyVoicekey "USBBOX VCKGET"]
Set[MyNumber "MyVoicekey->MinSigDur"]

 assuming that MyVoicekey is of type Voice Key and MyNumber is of type Inte-
ger or Long. Notice that the second assignment does not use the USBBOX
predicate, but is a normal assignment of a variable from an array field in the usual
PsyScope language.

Composing USBBBox predicates inside expressions

USBBox predicates can occur within expressions with arithmetic operators, pro-
vided that their types are compatible. Thus, for example, given that GETRTC re-
turns a long integer, you can write

Set[MyVariable "USBBOX GETRTC"]
as we saw, but also

Set[MyVariable "(USBBOX GETRTC) + 1"]
or anything else containing arithmetic and logical operators, if you need to do so.
The only thing to remember is that the USBBOX operator (with the exception of
Serin) is unary, and therefore the following syntax

Set[MyVariable "USBBOX GETRTC + 1"]
or

Set[MyVariable "USBBOX (GETRTC + 1)"]
,where numbers are specified inside the GETRTC scope, would have a com-
pletely different meaning: the operation inside parentheses would be executed,
which would result in a number, and USBBOX over that number would be inter-
preted as a code for a different command -- most likely, not the one you want.
This is something you want to avoid.

In these expressions, non numerical values are converted to numbers. So

Set[BBoxMask "USBBBOX GETMSK"]
would be evaluated as a 16 bit string (e.g., 1111111100100000) and assigned to
the variable BBoxMask of type string. But

 45 of 50

 1/10/09

Set[BBoxMask "(USBBBOX GETMSK)+1"]
would give a number (e.g., 28065, if BBoxMask were of type Long_Integer).

The SERIALIN assignement

The expression

Set[VAR "SERIALIN n"]
(no USBBOX predicate here), where n is a number from 1 to 256, return the n
latest characters parked in the serial port buffer, and removes them from the
buffer at the same time. Any n biger than 256 will be accepted in the expression,
but it will be "squeezed" onto 256. The resulting value is a string. This command
can only be used if serial data parking has been set to TRUE.

Analyzing your experiment: The Data File

The USBBbox provides a rich set of data that can be relevant for any given ex-
periment. We had to balance the clutter that exposing then all in the data file
would have generated with ht potential interest of having them in the data file. We
decided to follow a middle line, by inserting into the data file a selection that
seemed reasonable to us. This means that somebody won't be happy, either be-
cause there is too much or because there is too little. We hope to have managed
to dissatisfy everybody, so that somebody will feel compelled to improve what we
did.

When the USBBbox is activated as an input device, several new columns are re-
corded in the data file:

 46 of 50

 1/10/09

In all columns, 0 is OFF, 1 is ON and X is masked.

UBButtons

This column is probably the one that you are most interested in. It contains an ar-
ray specifying the state of the buttons, from left to right. Nothing strange here.

UBPorts

This column presents the state of the two synchronous ports Port) and Port 2.

 UBDrift

This columns reports the estimated drift, adjourned during the experiment (always
by an estimation procedure), between the computer and the Mac clocks. In a
separate way, by acting on the Drift Estimation section of the USBBbox window,
you can estimate the drift and decide to integrate it into the time values, or else
leave things as they are and take care of adding the values later if they are impor-
tant for your experiment. The column allows you to monitor the differences and
take your decisions.

 47 of 50

 1/10/09

UBVoice and UBOptic

These fields contain the values for the Voice Key and the Optic Key (which does
not exist in the first release of the ioLab USBBbox). We decided to treat them as
separate fields, as in most cases you will want to analyze them separately. How-
ever, do remember that the Voice and Optic keys are two auxiliary standard lines.
Thus, in principle, they can be rewired towards other devices, although they will
maintain these names in the data file. As usual, 0 is OFF, 1 is ON and X is
masked.

UBQueueLength

Internally, the USBBbox has a queue in which all the events that happen are re-
corded. This buffer is emptied when the data are moved to the computer, which
can only happen in intervals determined by the USB communication protocol. In
particular occasions, this queue may be full or close to full. When the data over-
flow the buffer, the program will stop. However, sometimes the buffer may not be
completely full and yet have lots of data in it. As the data are stacked in a FILO
buffer, the fuller the buffer, the longer the data will take to be extracted. Therefore,
it is good practice to check abnormal data against a measure how full the buffer
is. UBQueueLength offers this measures. In normal conditions, the buffer should
be almost empty. The maximum value is 64. Because the current USBBbox firm-
ware can only communicate one data package per exchange, and because every
“pass” takes at least 1 ms, a certain value in UBQueueLenght indicates that it
took at least that many milliseconds for it to be communicated to the computer;
possibly, more, if the USB communication does not go through at its best.

UBRelativeTS, UBAbsoluteTS, and UBSystemTS

To understand these columns you have to go back to the discussion of the timing
issues at the beginning of this booklet.

When an experiment begins, the time of the USBBbox is set to zero, just as the
internal timer of the computer.

As the two timers take different times to execute the command Set me
to zero, there is no guarantee that the zero values will be exactly the
same. In particular, the USBBbox timer can start counting from zero a bit
later than the internal timer, because the Set me to zero command must
travel through the USB interface.

 48 of 50

 1/10/09

When a button is being pressed/released, or any other event occurs in the button
box, the USBBbox immediately timestamps it. We provide two columns that give
the USBBbox timestamps: the UBRelativeTS, which reports the timestamp rela-
tive to the beginning of the event that the reaction time is relative to, and the UB-
AbsoluteTS, which reports the timestamp relative to the beginning of the experi-
ment, or more exactly, to the moment in which the USBBbox clock has been ac-
tually set to zero.

Then the USBBbox sends the packet containing the timestamp (and the other in-
formation such as what button/line triggered the event) to the computer, via the
USB port. On the other side, the Operative system receives the packages. As a
mean of control of the accurateness of this passage, we provide another "inter-
nal" timestamp: the time at which the system (indeed, the USBBbox driver) re-
ceives the package. This is the UBSystemTS.

Ideally, the difference between the UBRelativeTS and the UBSystemTS should
be on the order of one-two milliseconds. You have to control this in order to see
how accurate your whole setup is.

UBRelativeTS and UBSystemTS can and should be checked against the Time
column. This is the time information routinely provided by PsyScope, marked via
the internal clock. Differences between UBSystemTS and the Time column may
signal that the operative system is running some process that sneaks in between
the arrival of the package from the USBBbox and the possibility on the part of
PsyScope of seeing that a button/line of the USBBbox changed of state. This may
be unavoidable in certain conditions, but you have to monitor that this reduces to
the minimum.

In general, you have to understand how the computer processes can be
reduced to the least possible ones before running your experiment. Re-
member that the accuracy of your result may crucially depend on your
understanding of how your computer and its OS work.

What time to analyze, then? Well, if your experiment only consists of inputs com-
ing from the USBBbox, most likely you will want to use the UBRelativeTS for your
analysis. However, if your experiment has several devices triggering RTs, then
the UBRelativeTS cannot be sufficient: Obviously, timestamps can only be taken
by the USBBbox, and so if a mouse click triggers a reaction time in your experi-
ment, then the UBRelativeTS field will be empty for that event. In other words,

the only column that will always contain a piece of time information

 49 of 50

 1/10/09

will be the Time column.

In this case, probably the best strategy is to compare the difference between the
values contained in the UBRelativeTS and the Time column, for the RT that are
originated from the USBBbox, and see what difference exists between the two. If
you need to choose between them, do remember that

UBRelativeTS contains time stamps, that is, values that are stamped
independently of any delay the computer may introduce. However, Time
will contain the moment at which PsyScope realizes that something
happened, and hence, only after the values recorded at Time will any
planned action be initiated.

Other Values

According to the needs of your experiment, you can in principle always define a
variable, assign it a value relative to one or the others of the settings of the
USBBbox, and then mark that variable to be saved in the data file in the usual
way allowed by PsyScope. If your experiment modifies any of those parameters,
or if in any case you want to have a column marking them in the data file for your
convenience (e.g., knowing what the minimum signal duration was at the moment
in which the RT was taken), you are strongly suggested to do so. If you do not, all
the values that the USBBbox has at the beginning of the experiment will be saved
in the Log file, and you can always retrieve them from there.

A final point: Reference timer and time values

No matter what column you are considering, do remember that you can always
align all the values to the internal timer, or else to the USBBox timer, by selecting
the Reference Timer from the Experiment menu entries. As explained above, this
is only a reference point, not a change of the timer that is being consulted by
PsyScope for its operations (which is always the internal clock). However, it will
affect all the data recorded into the data file.

Miscellaneous issues

TO BE COMPLETED

 50 of 50

 1/10/09

